کل مقاله 104 صفحه
فیزیک حالت جامد به زمینه گستردهای از ویژگیهای مختلف مواد میپردازد. مواد، بنابر خاصیت الکتریکی یا مغناطیسی که خود بروز میدهند در یکی از گروههای سرامیکها، نارساناها، نیمرساناها، رساناها، ابر رساناها، و یا مواد مغناطیسی قرار میگیرند. با وجودی که کتابهای نوشته شده با عنوان عام فیزیک حالت جامد و یا با عنوانهای اختصاصی مثل فیزیک نیمرساناها، فیزیک ابر رساناها، فیزیک مواد مغناطیسی، و غیره بسیار زیادند ولی متاسفانه کتابهایی که در زمینه فیزیک حالت جامد یا هر یک از زیر شاخه های آن به فارسی برگردانده شدهاند بسیار کم و حتی به تعداد انگشتان دست هم نمی رسد.70 سال از کشف ابر رسانایی میگذرد ولی تنها در خلال دو دهه گذشته بوده است که ابررساناها از اجسام مرموز مورد استفاده فیزیکدانها دز آزمایشهایشان به موادی با اهمیت کاربردی تغییر ماهیت داده اند. فن آوریهای تازه ای ظهور کردند که در آنها از مواد ابر رساناها برای توسعه قطعات الکترونیک با حساسیت و دقت بالا از قبیل تابش سنج ها، تشدید کننده های بسامد بالا، مخلوط برخوردار میشوند. اکنون برنامه های پژوهشی با هدف توسعه قطعات منطقی و حافظه برای رایانه ها بر پایه ابر رساناها در حال اجراست.
به خاطر این توسعه ها، تعداد قابل توجهی از متخصصین به طور روزمره با پدیده ابر رسانای سرو کار دارند. اکنون دوره های آموزشی مناسب در برخی از دانشگاهها و کالجهای فنی ارائه میشود.
در حال حاضر، چند کتاب کاملا عمومی در زمینه ابر رسانایی در دسترس اند. این کتابها عبارتند از: کتابهای نوشته شده توسط آ. سی. رز- اینز و ای. اچ ]1[، ای. آ. لینتون ]2[، ام. تینخام ]3[، پی. جی. دجنز ]4[، و دی. آر. تیلی و جر . تیلی ]5[ هر یک از این کتابها در نوع خود عالی است. ولی برخی از آنها، مثل ]3و4[ نیاز به زمینه خوبی در فیزیک نظری دارند در حالی که کتابهای دیگر تصویری کاملا به روز از فیزیک ابر رساناها به دست نمی دهند.
1-1-1 کشف ابر رسانایی
ابر رسانایی در سال 1911 در آزمایشگاه لیدن کشف شد. اچ. کامرلینگ اونس به هنگام مطالعه وابستگی دمایی مقاومت ویژه الکتریک نمونه ای از جیوه، مشاهده کرد که در دمایT*نزدیک به k4، مقاومت نمونه ناگهان به صفر سقوط میکند و در همه دماهای دسترس پذیر زیر T* مقاومت دیگر قابل اندازه گیری نیست ]6[. نکته مهم این که با کاهش دما مقاومت ناگهان به صفر میرسید نه به تدریج، آشکار بود که نمونه باید دستخوش گذاری به حالت جدیدی با مقاومت الکتریکی صفر شده باشد که در آن زمان ناشناخته بوده است. این پدیده را ابررسانایی نامیدند.
هر گونه تلاش برای یافتن کوچکترین اثری از مقاومت در ابررساناهای کپه ای، راه به جایی نبرد. با توجه به حساسیت وسایل اندازه گیری جدید، میتوان گفت که مقاومت ویژه ابر رساناها، حداقل تا دقت 10-10، صفر است. در مقایسه، میدانیم که مرتبه بزرگی مقاومت ویژه مس با خلوص بالا در k2/4 برابر است با 9-10
مدت کوتاهی پس از کشف ابر رسانایی در جیوه، این خاصیت در سایر فلزات، مانند: قلع، سرب، ایندیم، آلومینیوم، نیوبیم و غیره یافت شد. همچنین معلوم شد که تعداد زیادی آلیاژ و ترکیبات بین فلزی نیز ابر رسانا هستند.
دمای گذار از حالت عادی به ابر رسانایی را دمای بحرانی Tc مینامند. زمان کوتاهی پس از این کشف معلوم شد که نه تنها با گرم کردن نمونه، بلکه با قرار دادن آن در میدان مغناطیسی نسبتا ضعیف میتوان ابر رسانای از بین برد. این میدان، Hcm، را میدان بحرانی ماده کپه ای میخوانند.
جدول 1-1 دماهای بحرانی میدانهای مغناطیسی بحرانی عناصر ابر رسانا [v].
Hcm(0)/Oe |
Tc/K |
عنصر |
Hcm(0)/Oe |
Tc/K |
عنصر |
1803 |
4/1 |
Pa |
03/09/104 |
002/0175/1 |
Al |
5200 |
006/0196/7 |
Pb |
026/1 |
Be |
|
269 |
006/0697/1 |
Re |
128 |
002/0517/0 |
Cd |
2305 |
015/049/0 |
Ru |
3/02/59 |
001/0083/1 |
Ga |
6829 |
001/0722/3 |
Sn |
128/0 |
Hf |
|
1410 |
04/047/4 |
Ta |
2411 |
001/0154/4 |
|
3160 |
01/08/7 |
Tc |
339 |
949/3 |
|
56 |
02/038/1 |
Th |
25/281 |
001/0408/3 |
In |
5178 |
04/040/0 |
Ti |
05/016 |
001/01125/0 |
Ir |
1408 |
04/038/2 |
Tl |
10800 |
02/088/4 |
|
3/015/1 |
05/040/5 |
V |
1600،1096 |
1/00/6 |
|
3/054 |
000/50154/0 |
W |
400< |
1/0 |
Lu |
47 |
01/0850/0 |
Zn |
396 |
005/0915/0 |
Mo |
15/161/0 |
Zr |
502060 |
02/025/9 |
Nb |
|
70 |
03/066/0 |
Os |
|||
در اکثر نوشتارهای انگلیسی زبان، Hcm را میدان بحرانی ترمودینامیکی، Hcth، مینامند.
جدول (1-1) مقادیر Hcm،Tc را برای تعدادی از عناصر ابر رسانا نشان میدهد. در این جا Hcm(0) میدان بحرانی برون یابی شده تا صفر مطلق است. وابستگی دمایی Hcm با رابطه تجربی
Hcm(T)=hcm(0)[1-(T/Tc)2] (1-1)
سازگاری خوبی دارد. این وابستگی در شکل 1-1 نشان داده است که اصولا نمودار فاز H-T حالت ابر رسانش را نشان میدهد. در ناحیه سایه خورده، هر نقطه در صفحه H-T با حالت ابررسانشی همخوان است.
در سالهای اخیر، واژه ابر رسانایی به صورت کلمه ای جادویی در آمده است. تصور نمی شود که در حال حاضر فناوری جدید دیگری تا این اندازه توجه عموم را به خود جلب کرده باشد. پس از سالهای ابهام در مورد این پدیده، اکنون ابر رسانایی در زمینه های پزشکی، علوم نظری و تجربی، نظامی، ترابری، برق، الکترونیک و موارد زیاد دیگری کاربرد پیدا کرده است.
تقریبا همه روزه رساناهای عمومی در سرتاسر دنیا مطالب جالب و متنوعی را درباره این پدیده، که شدیدا مورد علاقه خوانندگان و شنوندگان بسیاری است، درج و پخش میکنند. اگر چه غالبا تحلیهای و پیش گوییهای دانشمندان بعد از یک دوران شکوفایی سریعا رو به افول میگذارد، با این همه تب ابر رسانایی همچنان سازمانهای مختلف تجاری و دولتی را فرا گرفته است.
در ایالات متحده، عقیده بر این است که ابر رسانایی نقش کلیدی در آینده فناوری این کشور بازی خواهد کرد و نیز میتواند به عنوان وسیله ای کار ساز در میدان رقابت فنی با ژاپن مورد استفاده قرار گیرد. دیدگاههای نظامی در مورد ابر رسانایی با کمی تفاوت، بیشتر بر ساخت سلاحهای سریع و دقیق تر و نیز ابزار دیده بانی متمرکز میشود. صرف نظر از موارد کاربردی آن، بسیاری از شرکتها در زمینه تجاری ابر رسانای با هم رقابت میکنند.
اغلب سازمانهایی که با مسائل فنی سرو کار دارند، از قبیل بل، جنرال الکتریک و آی. بی. ام با این مساله ارتباط تنگاتنگ دارند و نیز فعالیت اصلی بسیاری از شرکتهای جدیدتر بر روی این پدیده متمرکز است.حتی گفته میشود که از نظر فناوری، صنعت ابر رسانایی مترادف با صنعت نیمرسانایی است.
به هر حال، ابر رسانای موضوعی بسیار گسترده است. کوشش برای شناخت و یادگیری این پدیده پژوهشگران را با مطالعه و بررسی زمینه های بالقوه دیگر آن از قبیل پزشکی، فیزیک ریز اتمی، شیمی سرامیک، زیر دریاییهایی که عمدتا در امور جنگی از آنها استفاده میشود و حتی مسائل سیاسی وامی دارد.
اگر چه ابر رسانایی از سال 1911 برای دانشمندان پدیده ای شناخته شده بوده است، اما اهمیت آن به عنوان یک عامل بالقوه در سالهای اخیر مشخص و مورد توجه قرار گرفته است. حتی میتوان نقش این پدیده را در پیشبرد صنعت و فناوری با نقش ترانزیستور و لیزر در این زمینه مقایسه کرد.
ابر رسانایی پدیده ای چند چهره است که مزیتهای بسیاری را در ارتباط با فناوری روز ارائه میدهد.
ابر رسانایی دارای جنبه های بسیاری است که دانشمندان مختلف به منظور توسعه و پیشرفت این جنبه ها، فعالیت میکنند. هدف اصلی این تلاشها به کار گیری عملی ابر رساناها در صنعت و فناوری است. همان گونه که با قرار گرفتن تعدادی ترانزیستور در کنار قطعات دیگر وسیله ای الکترونیکی (مثلا رادیو) ساخته میشود، اثر کامل ابر رسانا ها نیز زمانی ظاهر میشود که به شکلی عملی مورد استفاده قرار گیرند. برای رسیدن به چنین هدفی تلاش گسترده، به شکل رقابت جهانی، آغاز شده است.
به منظور فهم کامل این کشف و پی بردن به اهمیت آن نیاز به این است که در مورد الکتریسیته و جریان الکتریکی اطلاعاتی از قبل داشته باشیم. به شکل خیلی ساده، الکتریسیته حرکت الکترونهاست که جریان الکتریکی نامیده میشود.دلیل ایجاد چنین جریانی را در فصل بعد مطالعه خواهیم کرد، اما در حال حاضر فرض میکنیم که جریانی از الکترونها وجود داشته باشد. معمولا ماده ای را که در آن الکترونها میتوانند جریان پیدا کنند رسانا مینامند. برای مثال اغلب وسایل الکتریکی دارای سیمی متصل به یک دو شاخه هستند. معمولا این سیم که رساناست از ماده ای فلزی مانند مس ساخته شده است. زمانی که دو شاخه داخل پریز قرار میگیرد جریان الکتریکی در داخل سیم برقرار میشود. پریزها توسط سیمهای دیگر به جعبه فیوز متصلند و جعبه فیوز نیز توسط سیمهای رسانا به خطوط قدرت که برق ساختمان را تامین میکنند وصل میشود.
بنابراین یک رسانا ماده است که میتواند جریان الکتریکی را به خوبی از خود عبور دهد. مس رسانای بسیار خوبی است که معمولا سیمها و کابلهای انتقال را از آن میسازند. آلومینیوم، نقره و طلا هم رساناهای خوبی هستند. موادی از قبیل شیشه، جیر و چوب که جریان الکتریکی را هدایت نمی کنند، نارسانا یا عایق نامیده میشوند. مواد دیگری که جریان الکتریکی را تا اندازه ای هدایت میکنند (نه به خوبی رساناهایی مثل مس) نیمرسانا نام دارند. به هر حال، باید توجه داشت که حتی بهترین رساناها (مانند مس) رساناهای کاملی نیستند زیرا، به علت داشتن مقاومت الکتریکی، درصدی از انرژی الکتریکی عبوری از خود را هدر میدهند. مقاومت مانعی در سر راه جریان الکترییسیته است و عایقها به علت داشتن مقاومت بالا جریان الکتریکی را به خوبی از خود عبور نمی دهند. اگر چه مقاومت الکتریکی نیمرسانا ها تا حدی زیاد است اما آن قدر زیاد نیست که مانع عبور جریان الکتریسیته شود. مقاومت رساناها در مقابل عبور جریان کم است. علت وجود مقاومت در مواد مربوط به خواص اتمی آنها میشود که در فصل بعد مورد بحث قرار میگیرد و این اساس ظاهر شدن پدیده ابر رسانایی است.
قبل از سال 1911، حذف مقاومت الکتریکی حتی در بهترین رساناها امکان پذیر نبود. در این سال با کشف پدیده ابررسانایی گونه ای جدید از رسانا که (ابر رسانا) نامیده میشوند تولد یافتند. به طور ساده ابر رساناها، موادی هستند که عملا الکتریسیته را بدون هیچ مقاومتی از خود عبور میدهند و در نتیجه انرژی الکتریکی به هیچ وجه تلف نمی شود . جدول 1-1 مشخصات 4 دسته از مواد را از نظر رسانایی نشان میدهد.
جدول 1-1 دسته بندی مواد از نظر رسانایی الکتریکی
مقاومت |
مثال |
نام |
خیلی بالا |
شیشه |
عایق |
متوسط |
سیلیکون |
نیمرساتا |
خیلی پایین |
مس |
رسانا |
صفر |
بعضی از مواد مشخص |
ابررسانا |
آونگی (مثلا یک تاب) را در نظر بگیرید. چنانچه به این آونگ نیرو وارد شود و آن را از حالت تعادل خارج کند، آونگ شروع به نوسان خواهد کرد و پس از مدتی از حرکت میایستد. دلیل توقف آونگ آن است که به علت وجود مقاومت هوا و نیز اصطکاک، انرژی منتقل شده به تاب از بین میرود. حال آونگ یا تابی را در نظر بگیرید که هیچ گاه متوقف نمی شود و زمانی که به نوسان در آید برای همیشه با همان دامنه اولیه به نوسان ادامه دهد. این مثال را میتواند برای حالت ابررسانایی نیز به کار برد. همان طور که قبلا گفته شد، در یک رسانا به سبب وجود مقاومت، انرژی الکتریکی سریعا کاهش پیدا میکند، در حال که در یک ابر رسانا جریان الکتریکی بدون هیچ گونه تغییراتی برای همیشه پایدار باقی میماند، زیرا هیچ عاملی که بخواهد آن را متوقف سازد وجود ندارد.
انس آزمایشهایش را برای کشف احتمالی ابررسانایی در فلزات دیگر هم ادامه داد. مجبور بود که ماده را در هلیوم مایع نگه دارد. هلیم که غالبا آن را به عنوان یک گاز میشناسیم در حدود k4 مایع میشود. انس جریان الکتریکی را به حلقه ابر رسانا (جیوه در هلیم مایع) القا کرد و یک سال بعد مشاهده کرد که این جریان در حلقه، بدون هیچ کاهشی، هنوز در حال شارش است.
پس از کشف ابر رسانایی و علی رغم شناخت اهمیت آن برای چندین دهه هیچ گونه تلاشی در جهت استفاه عملی از آن انجام نشد. مانع بزرگی که در به کار گیری ابر رساناها وجود داشت، عدم امکان دست یابی به سرمای فوق العاده مورد نیاز بود. وسایل و تجهیزاتی که برای تهیه هلیم مایع و سرد کردن ماده ابررسانا لازم است پیچیده و پر هزینه میباشند که حتی امروزه هم به عنوان یک مشکل خود نمایی میکند. مشکل دوم عدم توانایی ابر رساناها در تحمل میدانهای مغناطیسی بزرگ است. مدتهاست که از آهن رباهای الکتریکی برای تولید میدان مغناطیسی القا میشود. با جایگزینی ابر رسانا به جای رساناهای معمولی و سرد کردن حلقه به میزان لازم، به نظر میرسد که بتوان میدانهای مغناطیسی بسیار قوی تر ایجاد کرد. به علاوه در این حالت به علت عدم مقاومت الکتریکی حلقه گرم نمی شود. با وجود این زمانی که میدان مغناطیسی تا حد معینی افزایش یابد پدیده ابر رسانایی از بین میرود و ابر رسانا به یک رسانای معمولی تبدیل میشود. در حدود سال 1940 مشکلات مربوط به محدودیت میدان مغناطیسی تا اندازه ای حل شد و در سالهای اخیر با ساخت وسایل پیشرفته و کشف ابر رسانای با دمای بحرانی بالا، مساله رسیدن به دمای پایین مورد نیاز برای ظاهر شدن پدیده ابر رسانایی، تا حدی بر طرف گردیده است.
همان طورکه قبلا اشاره شد، سرد کردن مواد ابر رسانا تا نزدیک صفر مطلق همواره به عنوان یک مشکل مطرح بوده است. برای رسیدن به دمای k 4 از هلیم مایع استفاده میشود. هلیم مایع بسیار گران است و تجهیزات و وسایل مورد نیاز در رابطه با آن نیز فضای نسبتا وسیعی را اشغال میکند. با توجه به هزینه زیاد رسیدن به دمای پایین، جایگزین کردن مواد ابر رسانا به جای رساناهای معمولی، عملی مقرون به صرفه نبوده است. به همین سبب از ابر رساناها بیشتر در موارد خاص از قبیل ساخت آهن رباهای الکتریکی بسیار قوی، که رساناهای معمولی برای چنین کاری مناسب نیستند، استفاده شده است. بنابراین اگر ابر رسانایی بخواهد به بیرون از آزمایشگاهها پای بگذارد و وارد صنعت و فناوری شود، در وهله اول لازم است که مشکل سرد کردن حل گردد.
برای غلبه بر این مشکل، دو راه بدیهی وجود دارد. اول پیدا کردن روشی مناسب تر برای سرد کردن ابر رساناها که هزینه خیلی کمی را در بر داشته باشد و دوم بالا بردن دمای بحرانی ابر رسانا، یعنی دمایی که در آن ماده معمولی به ابر رسانایی تغییر حالت میدهد. به نظر میرسد راه دوم یعنی پیدا کردن مواد ابر رسانایی که دارای دمای بحرانی بالاتری هستند. روشی مناسب تر و اقتصادی تر است، زیرا گذشته از آن که هزینه های مربوط به سرد کردن کاهش مییابد. و وسایل خنک کننده ساده تری نیز نیاز خواهیم داشت.
از آن جا که هلیم مایع بهترین وسیله شناخته شده برای سرد کردن مواد تا نزدیک صفر مطلق به حساب میآید، لذا موضوع ابر رسانایی میبایست تا زمان کشف مواد جدید با دمای بحرانی خیلی بالاتر از صفر مطلق در همان داخل آزمایشگاهها بررسی میشد و راه یافتن آن به محیط بیرون هیچ گونه صرفه اقتصادی به دنبال نداشت. دانشمندانی که با مواد مشابه آنچه که انس استفاده میکرد. کار میکردند تنها توانستند به مقدار کمی دمای بحرانی ابر رسانایی را با ترکیب برخی مواد باهم بالا ببرند، به طوری که در سال 1933 این دما در حدود k10 بود. در سال 1969 این دما به دو برابر یعنی k20 رسید که خود قدم بزرگی بود، زیرا هیدروژن در دمای k20 به مایع تبدیل میشود و بنابراین برای اولین بار دانشمندان میتوانستند از عامل دیگری به غیر از هلیم به عنوان سرد کننده استفاده کنند. چهار سال بعد یعنی در سال 1973، دمای بحرانی به k 23 افزایش یافت. پس از آن برای حدود یک دهه پژوهشگران با ساخت مواد و آلیاژهای مختلف سعی در افزایش بیشتر دمای بحرانی کردند که این تلاشها موفقیت چندانی را در بر نداشت.
در سال 1986 دو پژوهشگر به نامهای آلکس مولر [2] وجورج بدنورز[3] در موسسه آی. بی. ام زوریخ ماده سرامیکی جدید ابر رسانای با دمای بحرانی k30 را کشف کردند. این کشف مهم باعث شد که پژوهشگران زیادی مجددا در این زمینه شروع به فعالیت کنند و روی مواد سرامیکی مشابه با آنچه که در موسسه آی. بی. ام کشف شد کار نمایند.
در اواخر سال 1986 دمای بحرانی تا k39 افزایش یافت. در فوریه سال 1987 دکتر چینگ و وچو[1] و همکارانش در دانشگاه هوستون[2] کشف ابر رسانای جدیدی با دماهای بحرانی k98 را گزارش نمودند.
این کشف کل جامعه فیزیک را به هیجان آورد به لحاظ آن که مانعی بزرگ، یعنی مشکل سرد کنندگی، تا حدی از سر راه برداشته شده بود. دمای ازت مایع k77 است که بسیار پایین تر از دمای بحرانی، ابر رسانایی است که چو گزارش کرده بود. قیمت هر لیتر ازت مایع بسیار ارزان تر از هلیم و در امریکا حدود 50 سنت است. در صورتی که هر لیتر هلیم مایع چندین دلار میارزد. مزیت دیگر ازت مایع نسبت به هلیم آن است که به راحتی و با استفاده از ظروف عایق قابل حمل است. با این کشف امکان تهیه قطعات و وسایل صنعتی توسط چنین ابر رساناهایی عملی تر به نظر میرسد. با وجود این، تلاش برای افزایش دمای بحرانی در ابر رساناها خاتمه نیافته است. دانشمندان در نظر دارند. این دما را به حدود دمای اتاق( k 293) برسانند که در این صورت مشکل سرد کنندگی خودبه خود
حل خواهد شد. اخیرا برخی آزمایشگاهها ادعا کردهاند که دانستهاند ابر رساناهایی با دمای بحرانی بالای k230 تهیه نمایند که این ادعا هنوز تایید نشده است. (شکل زیر افزایش دمای بحرانی را در طی سالیان متمادی نشان میدهد.
البته مسائل زیادی بر سر راه ابر رساناهای جدید قرار دارد که باید حل شود. مثلا اگر چه دمای بحرانی این مواد نسبت به ابر رساناهای سنتی بسیار بالاتر است، اما مواد جدید نمی توانند جریانهای الکتریکی با چگالی خیلی زیاد را از خود عبور دهند. دیگر آن که شکل دهی این مواد به صورت سیم و حلقه به مراتب مشکل تر است. با وجود این اغلب پژوهشگران معتقدند که این مشکلات به مرور بر طرف خواهد شد. فصل بعد جزئیات بیشتری را در مورد ابر رساناهای جدید، و این که این پدیده چرا و چگونه رخ میدهد ارائه خواهد کرد و در پایان موضوعاتی مطرح میشوند که به نحوی با ابر رسانایی در ارتباطند.
در فصل قبل خلاصه ای در مورد پدیده ابر رسانایی و نیز نکاتی در ارتباط با پیشرفتهای اخیر در دست یابی به دماهای بحرانی بالا که در آن ابر رسانایی رخ میدهد، بیان گردید. در این فصل ابر رسانایی را بیشتر از دیدگاه جنبه های فنی آن و نیز خواص اتمی مواد ابر رسانا مورد بررسی قرار میدهیم. اما قبل از ادامه بحث لازم است اطلاعاتی کلی در مورد مبحث الکتریسیته و رسانایی ارائه شود.
همان طور که در فصل گذشته اشاره شد، مواد رسانا محیطی مناسب برای جاری شدن الکترونها را فراهم میکنند. مواد عایق هادی الکتریسیته نیستند. و نیمرسانا ها الکتریسیته را هدایت میکنند اما نه به خوبی رساناها. چه عاملی سبب میشود که دسته ای از مواد رسانا، بعضی دیگر نیمرسانا و برخی عایق باشند؟ پاسخ این سوال به خواص اتمی مواد مربوط میشود.
ممکن است پرسیده شود که عامل به حرکت در آوردن الکترونها در داخل یک رسانا چیست؟ الکترون ذره بنیادی موجود در تمام مواد است که دارای بار منفی است و جفت آن یعنی پروتون دارای بار مثبت است که ذره بنیادی دیگر است. نیروی بین این دو ذره از نوع جاذبه ای است. بعضی مواد دارای الکترونهای مازاد بوده و در برخی دیگر تعداد الکترونها کمتر از آنی است که میبایست در آن ماده وجود داشته باشد. اگر تعداد الکترونها و پروتونها در ماده ای برابر باشند آن ماده از نظر الکتریکی خنثی بوده و چنانچه تعداد الکترونها بیشتر از پروتونها باشد، آن ماده از نظر الکتریکی منفی و در صورتی که تعداد الکترونها کمتر از پروتونها باشد ماده مثبت خواهد بود. در شکل 2-1 دسته بندی مواد از نظر الکتریکی به صورت ساده نشان داده شده است.
شکل 2-1 دسته بندی مواد از نظر الکتریکی
الکترونهای اضافی موجود در ماده با بار منفی، جذب پروتنهای اضافی در ماده دارای بار مثبت میشوند. با وجود این، الکترونها به خوبی خود توانایی حرکت از ماده منفی به سوی ماده مثبت را ندارند. در این جاست که نقش یک رسانا مشخص میشود.می توان گفت رسانا ماده است که میتواند شارش الکترونها را تضمین نماید.
اختلاف بار الکتریکی دو ماده دارای بار منفی و مثبت، مشخص کننده نیروی وارد بر الکترونها برای بررسی حرکت از ماده منفی و رسیدن به ماده مثبت میباشد. این نیرو، اختلاف پتانسیل یا نیروی محرکه الکتریکی (emf) [3] یا به صورت خیلی ساده ولتاژ نامیده میشود. هر قدر نیروی وارد بر الکترونها (برای رسیدن به ماده مثبت) بیشتر باشد، ولتاژ بالاتر است.
یک باطری معمولی چراغ قوه را در نظر بگیرید. یک انتهای آن به عنوان طرف مثبت (+) و انتهای دیگر با علامت منفی (-) مشخص شده است. بیشتر باتریهای خانگی دارای ولتاژ 5/1 ولت میباشند. اگر قطبهای مثبت و منفی باطری توسط یک سیم مسی به هم وصل شوند، الکترونها در داخل سیم از انتهای طرف منفی به مثبت جریان پیدا میکنند.
ماده ای رسانا، مانند مس، دارای تعداد زیادی الکترون است که میتوانند آزادانه به هر طرف حرکت کنند. وقتی سیم مسی به دو سر یک باتری وصل میشود، الکترونهای آزاد در سیم به طرف قطب مثبت باتری حرکت میکنند. همزمان با آن الکترونهای موجود در قطب منفی باتری در داخل رسانا جریان پیدا کرده و جای الکترونهایی را که قبلا حرکت کردهاند میگیرند. بنابراین جریانی از الکترونها را از قطب منفی به طرف قطب مثبت در داخل رسانا خواهیم داشت
(شکل 2-2).
انرژی ناشی از جریان الکترونهای میتواند در وسایل الکتریکی مانند لامپهای روشنایی، موتورها و قطعات موجود در مدار الکتریکی استفاده شود. مقدار کاری که الکترونها میتوانند انجام دهند تابع دو عامل اصلی یعنی ولتاژ و جریان الکتریکی است. .ولتاژ نیروی محرکه الکتریکی است که جریان الکترونها را در سیم تامین میکند. جریان تعداد الکترونهایی است که شارش پیدا میکنند. هر چه تعداد الکترونها بیشتر باشد کار انجام شده توسط آنها بزرگتر است. یکای ولتاژ ولت و یکای جریان آمپر نام دارد.
شکل 2-2
روشهای گوناگونی به منظور تولید الکتریسیته وجود دارد، باتری تنها یک مثال است. الکتریسیته میتواند توسط مولدها، سلولهای نوری یا سلولهای خورشیدی نیز تولید شود. همچنین دو نوع مختلف از الکتریسیته وجود دارد: جریان متناوب (AC)[4]
و جریان مستقیم (DC) [5]. جریان الکتریکی متناوب معمولا توسط مولد و جریان مستقیم به وسیله باتری یا سلول خورشیدی تولید میشود. اغلب وسایل الکتریکی با جریان مستقیم کار میکنند و در برخی از آنها از وسیله ای (مبدل) برای تبدیل جریان متناوب به مستقیم استفاه میشود.
البته موضوع این کتاب ابر رسانایی است نه الکتریسیته، بحث قبلی به این منظور آورده شد که خوانندگان اطلاعاتی در مورد جریان الکترونها و این که چگونه این عمل رخ میدهد، داشته باشند.
قبلا با الکترون .و پروتون، دو ذره بنیادی که ماده را میسازند، آشنا شدیم. ذره بنیادی سوم نوترون است، این ذره از آن رو نوترون نامیده میشود که هیچ بار الکتریکی به آن وابسته نیست، به عبارت دیگر از نظر الکتریکی خنثی است. الکترونها، پروتونها و نوترونها کوچکترین واحد ماده یعنی اتم را میسازند. اتم را میتوان به شکل کره ای که در آن پروتونها و نوترونها در بخش کوچک و متراکمی در مرکز آن به نام هسته قرار گرفتهاند تصور نمود. پروتونها درمحدوده هسته بوده و حرکت نمی کنند، اما الکترونها روی مدارهای مشخص به دور هسته بوده و حرکت نمی کنند، اما الکترونها روی مدارهای مشخص به دور هسته میچرخند. اغلب تعداد زیادی از الکترونها میتوانند آزادانه حرکت کنند. در شکل 2-3 یک اتم به صورت ساده در دو بعد نشان داده شده است. پروتونها در داخل هسته نوع ماده (عنصر) را مشخص میکنند.
تمام اتمهای شناخته شده (یا عناصر) به صورتی معین دسته بندی شده و در جدولی معروف به جدول تناوبی آورده شده اند. در جدول تناوبی انواع مشابه اتمها مانند فلزات و گازها رده بندی شده و هر عنص یک نماد در جدول مشخص شده است. به عنوان مثال، عنصر سرب با pb نشان داده میشود.
الکترونها روی مدارهایی مشخص به دور هسته میچرخند و این مدارها، لایه های اتم را میسازند. نزدیکترین لایه به هسته میتواند تنها دو الکترون، لایه دوم 8 الکترون و بعدی 18 الکترون را در بر میگیرد. الکترونهای موجود در خارجی ترین لایه مشخص میکنند که چگونه یک اتم منفرد میتواند به اتمهای دیگر پیوند خورده و انواع مختلف مواد به وجود آیند. اگر اتمی در خارجی ترین لایه اش فقط یک الکترون داشته باشد و اتم دیگر به منظور این که خارجی ترین لایه را تکمیل کند تنها نیاز به یک الکترون داشته باشد، در این صورت این دو اتم ممکن است به هم متصل شده و الکترونهای خود را به اشتراک بگذارند. این فرآیند(پیوند) یا (اتصال) نامیده میشود و انواع مختلفی از پیوند برای اتصال اتمها به یکدیگر وجود دارد.
شکل 2-3
ساده ترین راه برای فهم این که چگونه اتمها به هم میپیوندند تا در نهایت مایعات، گازها و ترکیبات دیگر شکل گیرد آن است که این موضوع را به بازی لگو[6] مربوط کنیم.
اگر قطعات مختلف را از نظر شکل و اندازه دسته بندی کنیم دو قطعه هم شکل به سادگی میتوانند به یکدیگر متصل شوند و قطعات هم شکل با آنها، به شرط این که برای این کار مناسب باشند، نیز میتوانند به آنها اضافه شوند. به هر حال یک قطعه بزرگ میتواند به تعداد بسیاری از قطعات کوچکتر متصل شود.
یک جسم جامد از به هم پیوستن اتمها در یک شبکه سه بعدی و تکرار آن ایجاد میشود. چنین طرحی (ساختار شبکه[7] نام دارد. شکل 2-4 دو مدل از ساختار شبکه ابر رساناهای با دمای بحرانی بالا را نشان میدهد. ساختار شبکه چارچوبی است که جایگاه هر اتم را در شبکه مشخص میکند. وقتی جریان الکتریکی از یک رسانا میگذرد، الکترونهای در حال حرکت مجبورند که راهشان را در داخل شبکه پیدا کنند. گاهی اوقات یک الکترون به علت نزدیک شدن زیاد به یک اتم از مسیرش منحرف میشود و در این فرآیند مقداری از انرژی اش را به شبکه منتقل میکند، این چیزی است که سبب ایجاد مقاومت الکتریکی در رسانا میگردد. شکل 2-5 ساختار شبکه یک ابر رسانای با دمای بحرانی بالا را نشان میدهد.
اطلاعات ارائه شده در این بخش در فهم مطالب مربوط به ترکیبات ابر رسانایی و این که چگونه این مواد قادرند رسانش را بدون مقاومت انجام دهند، سودمند است. توانایی ابر رساناها در هدایت الکتریسیته بدون مقاومت تنها خاصیت منحصر به فرد آنها نیست. در بخشهای بعد برخی از ویژگیهای دیگر ابر رساناها مورد بحث قرار میگیرند.
جریان الکتریکی در یک حلقه ابر رسانا میتواند تا زمان نامحدودی باقی بماند. طبیعتا، این ماندگاری جریان به چشمه انرژی نیاز ندارد، زیرا مقاومت حلقه صفر است. چنین جریان ماندگاری را میتوان به شرح زیر تولید کرد: نخست حلقه را در T>Tc در میدان مغناطیسی خارجی قرار میدهیم به طوری که خطوط میدان مغناطیسی از درون حلقه بگذرند. سپس حلقه را تا دمای زیر Tc، تا جایی که ماده ابر رسانا میشود، سرد کرده و میدان مغناطیسی درون حلقه کاهش مییابد و بنابر قانون القای الکترومغناطیس فاراده، در حلقه جریانی القا میشود که از این لحظه به بعد دوام خواهد داشت. این جریان از کاهش بیشتر شار مغناطیسی حلقه جوگیری میکند، یعنی اکنون که میدان خارجی صفر است، جریان القایی خود باعث تامین شار به مقدار اولیه آن از حلقه میشود. در واقع، اگر حلقه دارای مقاومت محدود R باشد، شار از حلقه با ثبات زمانی L/R کاهش خواهد یافت. L خود القای حلقه است. در یک حلقه ابررسانا، چون R=0 است آهنگ کاهش شار مغناطیسی نامحدود است. یعنی تا وقتی در حلقه جریان ماندگاری شارش مییابد شار مغناطیسی در آن (به انجماد) در میآید، معمولا چنین جریانی را جریان ابر رسانا رسانش یا ابر جریان میخوانند.
در نخستین نگاه ممکن است چنین به نظر آید که شار مغناطیسی (منجمد) شده میتواند هر مقدار دلخواهی داشته باشد. ولی، آزمایشهای بسیاری ]8و9[ که برای روشن کردن این رفتار ابداع شد واقعیت تجربی بسیار مهمی را ثابت کرده است و آن این که مقادیر شار مغناطیسی یک پوسته استوانه ای ابر رسانشی فقط مضرب درستی از Gcm2 7-10*70/2= هستند. این مقدار ار کوانتوم شار مغناطیسی مینامند. و میتوان آن را به صورت ترکیبی از ثابتهای اساسی، یعنی نوشت که در آن h ثابت پلانک، c سرعت نور و e بار الکترون است. در سیستم یکاهای MKSA، داریم
[1] Ching-Wu(Paul)Chu
[2] Houston
[3] Electromotive force
[4] Alternative current
[5] Direct current
[6] lego set
[7] lattice structure
[1] Heike kamerlingh Onnes
[2] Alex Miiller
[3] Georg Bednorz